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Quantized vortices in spinor Bose–Einstein condensates with
time–space modulated interactions and stability analysis∗
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The three-component Gross–Pitaevskii equation with an angular momentum rotational term can be served as a model
to study spinor Bose–Einstein condensates (BECs) with time–space modulated interactions. Vortex solutions of the spinor
BECs with spatiotemporally modulated interactions are worked out by similarity transformation. Theoretical analysis and
numerical simulation of vortex states are demonstrated. Stable vortex states are obtained by adjusting the frequency of the
external potential and the spatiotemporally modulated interaction.
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1. Introduction
Realization of spinor Bose–Einstein condensates (BECs)

opens a new research area in ultracold atomic systems.
The idea of spinor condensations was proposed by Ho and
Ohmi.[1–4] In 1998, BECs were realized in a system of spin-1
23Na confined in an optical dipole trap in experiment.[5] The
directions of the atomic spins may change due to the interpar-
ticle interaction, so the order parameters of a spin- f BEC have
2 f + 1 components that can vary on space and time, which
present rich variety of spin textures. In addition, there are
some new phenomena that are not present in single-component
and two-component BECs, such as ground-state phase dia-
gram, spin dynamics, and spin-exchanged collision.[6,7] Such
novel properties make the spinor BEC as an attractive area of
research for quantum gases. At present, many studies have
been carried out.[8–14] However, there is few work on vortexes
of spinor BECs with time–space modulated interaction pre-
senting.

Quantum vortexes are topological singular points of the
quantum fluid wave function. The phase of the wave func-
tion will have a periodic change around these singular points.
It can be observed in many fields of physics, such as super-
fluids and optical fields. Since BECs in a dilute atomic gas
were observed in 1995, experimenters have been searching a
method to create vortexes in this system. At present, there are
many methods to create vortexes, for example, using a focused
laser beams to stir a BEC of 87Rb confined in a magnetic trap
can produce a vortex.[15] The dynamics of quantized vortexes
is essential for understanding different superfluid phenomena

such as novel quantum phases[16] and quantum turbulence.[17]

What’s more, vortexes are also topological defects that play a
vital role in coherent and dissipative properties of superfluid
systems.[18]

Inspired by importance of vortices and our understanding
of dynamical behaviors of nonlinear excitation in physical sys-
tems, we make the theoretical analysis and numerical studies
of the spinor BECs with time–space modulated interactions.
Recent experiments show that the effective scattering length
can be tuned by Feschbach resonance.[19] This brought about
a good proposal for manipulation of nonlinear excitations
and matter waves by controlling the time-dependent or space-
dependent scattering strength.[20–26] As for spinor BECs, one
can use an optically induced Feshbach resonance[27] or a con-
finement induced resonance[28] to tune nonlinearities. In this
paper, two families of exact vortex solutions of spinor BECs
with time–space modulated interactions are constructed ex-
plicitly by similarity transformation. Physical interpretations
and numerical simulations of the obtained results are illus-
trated. Stable and unstable vortices for different topological
charges and quantum numbers are shown by tuning the fre-
quency of external potential and spatiotemporally interaction.

2. The model and analytic vortex solutions
Here we focus on BECs of alkali atoms 87Rb in the F = 1

hyperfine state, restricted to two-dimensional space by purely
optical means. Under the mean-field approximation, the dy-
namics of the spinor condensates can be described by the
three-component Gross–Pitaevskii equation (GPE) with an an-
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gular momentum rotational term
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Here,

∇
2 =

∂ 2

∂x2 +
∂ 2

∂y2 ,

Ψ(x,y, t) = (ψ1(x,y, t),ψ0(x,y, t),ψ−1(x,y, t))T

is the dimensionless wave function of the rotating spin-1 BECs
and E j ∈ R is the dimensionless Zeeman energy of spin com-
ponent mF = −1,0,1. Vext is the external trapping potential
and it can be assumed as Vext =

m
2 [ω

2
r (x

2 + y2)+ω2
z z2] with

m being the mass of 87Rb atoms, ωr and ωz the confining fre-
quencies in the transverse and axial directions. We assume
that the harmonic trapping frequencies satisfy ωz� ω⊥, then
the condensates are pressed into a pancake. The harmonic
trapping potential is reduced to its 2D form m

2 ω2
⊥(x

2 + y2).
Lz is the z-component of the dimensionless angular momen-
tum rotation defined as Lz = −i(x∂y− y∂x). The strength of
the interaction is given by gn = gn

gs
= a0+2a2

a2−a0
, gs = ±1; a0

and a2 are the s-wave scattering lengths of scattering chan-
nels with total hyperfine spin-0 and spin-2, respectively.[15]

The interaction will be ferromagnetic if gs < 0 (such as 87Rb),
and antiferromagnetic if gs > 0 (such as 23Na). Specially,
gn = 216, gs = −1 for 87Rb and gn = 32, gs = 1 for 23Na.
In our case, the scattering lengths depend on time and space,
that is to say, gn = gn(x,y, t), gs = gs(x,y, t), which can be
realized by controlling the induced Feschbach resonances op-
tically or confinement induced resonances in the real BECs
experiments.[27–29] The length and time are measured in units
of
√

h̄
mw⊥

and w−1
⊥ , respectively.

Introducing the polar coordinate transformation x =

r cosθ , y = r sinθ , where θ is the azimuthal angel. Equa-
tion (1) can be rewritten as
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In order to obtain the vortex solutions to Eq. (2) for
limr→∞ ψ±1,0 = 0, we assume the solution in the form

Ψ±1,0 = β±1,0(r, t)U±1,0(X(r, t))e iαθ+iφ±1,0(r,t), (3)

where α±1,0 denotes the topological charge relevant to the an-
gular momentum and φ0 =

1
2 (φ1+φ−1), β±1,0(r, t) is the am-

plitude of each wave, and X(r, t) denotes the intermediate vari-
able reflecting the charges of the wave function U±1,0. Sub-
stituting Eq. (3) into Eq. (2) yields the ordinary differential
equations (ODEs)

U1XX +b11U3
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0 = 0,
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1 U0+b33U3
0 +b34U1U−1U0 = 0, (4)

and the partial differential equations (PDEs) related to
β±1,0(r, t), φ±1(r, t) and X(r, t)
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2
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+8ω
2r4 +8E0r2 +4α1α2]β0 = 0,

rβ0Xr,r +(2rβ0r +β0)Xr = 0,

2r(φ1r +φ2r)β0r +4rβ0t +(rφ1rr + rφ2rr +φ1r +φ2r)β0 = 0,

(φ1r +φ2r)Xr +2Xt = 0, (5)

where bi, j (i = 1,2,3, j = 1,2,3,4) are constants and satisfy
b14 = 2(b11−b13) and 2b33 = b11 +b13.

To obtain explicit solutions, we choose ω2 as the form

ω
2 = ωr/ωz = ω

2
0 + ε cos(ωt), (6)

where ε ∈ (−1,1) and ω0, ω ∈ R. Under the condition
E1 +E−1 = E0, solving ODEs (4) gives

U (1)
±1,0(X) =C±1,0v0CN(v0X +K(

√
2/2),

√
2/2), (7)

U (2)
±1,0(X) = D±1,0v1SD(v1X ,

√
2/2), (8)

where C±1,0 and D±1,0 are all constants related to the coeffi-
cients bi j; CN and SD = SN/DN are Jacobi elliptic functions.

In order to solve the PDEs, we take φ1(r, t) = f11r2 + f12,
φ−1(r, t) = f21r2+ f22. Here, fi j(i = 1,2, j = 1,2) are all func-
tions of r and t; f11 and f21 represent the frequency chirps; f12

and f22 are phases, respectively. Now, solving PDEs (5) gives
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Here bi j,ci,µ1,µ2,ω,Ω and α are all constants. Thus, we ob-
tain two families of exact vortex solutions to Eq. (2):

Ψ±1,0 = C±1,0v0β (r, t)e iαθ+iφ±1,0(r,t)CN(v0X

+K(
√

2/2),
√

2/2), (9)

Ψ±1,0 = D±1,0v1β (r, t)e iαθ+iφ±1,0(r,t)SD(v1X ,
√

2/2). (10)

When imposing the bounded condition lim|r|→∞Ψ±1,0(r,θ , t)=
0, we have
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2
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,
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2
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2
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3. Structures of the vortex solutions
The structures of the vortex states for the exact vortex so-

lutions (9) and (10) can be controlled by tuning the frequency
of the trapped potential, which depend on the radial quantum
number n and the topological charge α . The structures of the
vortex states for the exact vortex solutions (9) and (10) are
similar. We only take the vortex solutions (9) as an example
to illustrate the structures of the vortex states in the following
sections.
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Fig. 1. The density distributions |Ψ±1,0|2 and phase diagrams at t = 0 of the vortex solution (9) of the rotating spin-1 BECs for topological
charge α = 1. (a1)–(a4) Evolution of the density distributions |Ψ1(x,y,0)|2 for different radial quantum numbers n and the phase diagram. (b1)–
(b4) Evolution of the density distributions |Ψ−1(x,y,0)|2 for different radial quantum numbers n and the phase diagram. (c1)–(c4) Evolution
of the density distributions |Ψ0(x,y,0)|2 for different radial quantum numbers n and the phase diagram. The parameters are taken as Ω = 0.5,
µ1 = 8, µ2 = 4, ε = 0 and ω0 = 1.
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In real experiment, we take spin-1 BECs of alkali 87Rb
atoms with N = 1.8× 105 atoms. The radial frequency and
the axial frequency are taken as ω⊥ = 2π × 18 Hz and ωz =

2π×628 Hz.[30] For ε = 0, it can be found that the radial fre-
quency is time-independent from Eq. (6). In Fig. 1, we show
the density distributions and phase diagrams at t = 0 of the
vortex solution (9) for different radial quantum numbers n and
fixed topological charge α = 1. The first row in Fig. 1 cor-
responding to n = 1 is the lowest energy states. The second
and third rows corresponding to n = 2 and n = 3, respectively,
are two excited states. The last row in Fig. 1 shows the corre-
sponding phase diagrams of the |Ψ±1,0|2 for n = 1. It can be
seen that the numbers of the ring structure of the vortex solu-
tions increase one by one with different radial quantum num-
bers n. In Fig. 2, we show the properties of the vortex solution
(9) by taking different values of topological charge α and the
fixed radial quantum number n = 1. Figure 2 shows that the
density profiles grow more and more localized with increasing
topological charge α and the vortex expands outward with the
increasing topological charge α .
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Fig. 2. The density profiles |Ψ±1,0|2 and phase diagrams at t = 0 for the
vortex solution (9) of the rotating spin-1 BECs for different topological
charge α and fixed quantum number n = 1. The blue lines denote the
density profiles |Ψ±1,0|2 for the topological charge α = 1, respectively.
The green lines denote the density profiles |Ψ±1,0|2 for the topological
charge α = 2 and the red lines denote the density profiles |Ψ±1,0|2 for
the topological charge α = 3, respectively.

4. Dynamic stability analysis
It is important to generate the stable states in Bose–

Einstein condensates and there are many methods to produce
the stable states. For example, Saito and Ueda obtained the
stable matter-wave bright soliton by tuning the strength of in-
teractions via making use of Feshbach resonance.[31] Now we
investigate the dynamical stability of the vortex solution (9)
by performing some numerical simulations. Here we run the
numerical simulations using the split-step Fourier transforma-
tion. The domain is composed of 400×400 grid points and the

step sized of time integration is τ = 0.0001. The initial values
are taken as Ψ±1,0(x,y,0). First, we consider the rotating spin-
1 BECs with harmonic potential, i.e., ε = 0 in Eq. (6). Based
on Eq. (2), the evolution of the density and phase diagram of
the vortex solution (9) for fixed radial quantum numbers n and
increasing topological charge α are illustrated in Fig. 3. Fig-
ure 4 shows the evolution of the density and phase diagram of
the vortex solution (9) for the fixed topological charge α and
different radial quantum numbers n. Figures 3 and 4 show that
the vortex solution is stable only for n = α = 1 and the ring
structures are destroyed when α ≥ 2.
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Fig. 3. The evolution of density distributions |ψ±1,0|2 and phase dia-
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The first column is stable vortex for the topological charge α = 1. The
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µ2 = 4, ε = 0 and ω0 = 1. The domain is (x,y) ∈ [−5,5]× [−5,5] for
all the cases.

103701-4



Chin. Phys. B Vol. 29, No. 10 (2020) 103701

|Ψ-1|2 |Ψ0|2|Ψ1|2

y
y

n/1

(a1) t=0

0

-8

8

-8 0 8

x

(a2) t=80

0

8

-8
-8 0 8

x

1

2

(a3) t=80

-3

0

3

(b1) t=0

(b2) t=80

(b3) t=80

2.0

1

2

(c1) t=0

(c2) t=80

2

4
 

(c3) t=80

8

0

-8
-8 0 8

(d1) t=0

n/ x

x

0.2

0.6

0.2

0.6

0.5

1(e1) t=0 (f1) t=0

8

0

-8

(d2) t=5

0.04

0.18

-8 0 8

(d3)  t=5

-3

0

3

0.04

0.18(e2) t=5

(e3) t=5

0.1

0.3(f2) t=5

(f3) t=5

0.02

0.07

0.5 10

50

y
y

Τ10-6 Τ10-6 Τ10-4

Fig. 4. The evolution of density distributions |ψ±1,0|2 and phase dia-
grams for the vortex solution (9) of the rotating spin-1 BECs for the
fixed topological charge α and different quantum number n = 1. (a1)–
(c3) Evolution of density distributions |ψ±1,0|2 and phase diagrams for
the quantum number n = 1. (d1)–(f3) Evolution of density distributions
|ψ±1,0|2 and phase diagrams for the quantum number n = 2. The pa-
rameters are Ω = 0.5, µ1 = 8, µ2 = 4, ε = 0 and ω0 = 1.

When the harmonic trap depends on the time, that is to

say, ε 6= 0 in Eq. (6), the time evolution of the density and

phase diagram of the vortex solution (9) with two different

values of topological charge α and radial quantum numbers n

is concerned in Fig. 5. It is observed that the time-dependent

frequency of the external potential affects the density distri-

bution of the vortex states and the time of vortex decay from

Figs. 3–5. The vortex states correspond to many high-energy

collective excitation modes because of the dependence of in-

teraction parameter and the frequency of the external potential

on time and space. For the lowest mode with the topological

charge α = 1 and quantum number n = 1, the vortex state is

stable against a Gaussian noise. When the topological charge

α = 2 or the quantum number n = 2, the vortex states have a

tendency to decay due to the high-energy collective excitation.

These characteristics can be observed from Figs. 3–5.
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grams for the vortex solution (9) of the rotating spin-1 BECs for dif-
ferent values of topological charge α and quantum number n. The
first three lines show the evolution of density distributions |ψ±1,0|2 and
phase diagrams for n = α = 1. The three lines in the middle show the
evolution of density distributions |ψ±1,0|2 and phase diagrams for n = 1
and α = 2. The last three lines demonstrate the evolution of density
distributions |ψ±1,0|2 and phase diagrams for n = 2 and α = 1. The
parameters are Ω = 0.5, µ1 = 8, µ2 = 4, ε = 0.1 and ω0 = 0.2.

5. Conclusions

In this paper, we focus on the quantized vortices in spinor
BECs with time–space modulated interactions and take the al-
kali atoms 87Rb in the F = 1 hyperfine state as an example to
show how to produce vortexes. Under the mean-field approx-
imation, the dynamics of spinor condensates can be described
by three-component GPE with an angular momentum rota-
tional term. Two types of exact vortex solutions expressed by
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the Jacobi elliptic function are constructed by similarity trans-
formation. The dynamical behaviors of the vortex solutions
are analyzed by numerical stimulation. The results show that
stable vortex states can be obtained by adjusting the frequency
of the external potential and the spatiotemporally modulated
interaction. We hope that the vortex state of spinor BECs with
time–space modulated interactions can be realized in future
experiments and help us to understand this behavior further.
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